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ABSTRACT

It is shown that the minimum drag problem for wings and bodies in

supersonic flow can be treated through a determination of the potential
and forces on the enclosing characteristic surfaces (Mach cones on plane

Mach waves). An application of the method to a class of wings with

straight edges is included.
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ON BODIES OF MINIMUM DRAG IN A SUPERSONIC GAS FLOW*

By M° N. Kogan

The problem of the determination of the minimum drag of wings and

bodies in the supersonic flow of a gas is considered within the frame of

the linear theory° In supersonic flow there are surfaces on which the

forces acting on the bodies enclosed within these surfaces can be ex-

pressed through the values of the velocity potential on the surface.

This condition permits reducing the problem of determining the extremal

properties of three-dimensional bodies to a two-dimensional problem. In

subsonic flow_ in the general case_ no such surfaces exist at a finite

distance. As an example there is considered a wing with arbitrary super-

sonic leading edge and with trailing edge perpendicular to the flow.

This problem is found to be entirely analogous to the classical problem

of Munk (ref. I) for a wing in an incompressible flow.

I. Fundamental theorem. - It is well known that the forces acting

on a wing in an incompressible fluid can be expressed_ in the infinitely

removed plane_ through the values of the velocity potential in this

plane. Hence_ in this case_ it is possible to determine the minimum

drag of the wing for a given lift force without going outside the

Trefftz plane and without knowing the entire velocity field and shape of

the wing having this drag.

Thus_ in this case_ as a result of the solution of the two-

dimensional problem_ first the forces and circulations over the wing

span were determined and then the Rug itself was obtained in order to

simplify the problem.

In the supersonic case this procedure cannot be carried out in the

infinitely removed plane. ....

By using the characteristic cone as control surface, A. A. Nikolski

(ref. 2) split the problem of determining the minimumdrag of a body of

revolution in a supersonic flow.

In order to be able to split the variational problems, in the

general case_ it is necessary that on the chosen control surface the
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forces acting on the bodies enclosed in it and the law of conservation
of massbe expressed through the potential on that surface.

Let us consider a body or a group of bodies in the supersonic flo_
of a gas. The potential of the disturbed velocities is denoted by
and the components of the velocities, respectively, on the x_ y, and Z
axes are denoted by u = _x_ v = @y_w = _z (the subscripts denote dif-
ferentiation).

The potential @ satisfies the equation

[_2exx " _yy - _zz = 0 2 i) (1.1)(_2_-Mo.

t_
!

o_

where NO is the Mach number of the undisturbed flow. Let F(x,y,z) be

the equation of the control surface enclosing the bodies considered. The

laws of conservation of mass and momentum can be _¢ritten_ respectively_
in the form

(1.2)

X= p

ff

Y = POvO_ _(q_xFy - _yFx)ds
JFJ-

_f_(_ _F_)dsz = _oVo x_z -

(1.3)

(1.4)

(1.5)

where X_ Y, Z are the components On the x, y, and z axes of the force

applied to the bodies enclosed within the control surface and 00 and

v0 are the density and velocity of the undisturbed flow_ respectively.

Theorem. In order to express relations (1.2) to (Io5) through the

values of the potential on F it is necessary and sufficient that the

surface F be a characteristic surface of equation (I°I).



In fact, consider, for example_ the expression in brackets in equa-

tion (1.2). We choose F in such manner that this expression represents
a derivative along F.

Any derivative along F is proportional to the expression

_o

!

_xFz- _yy'Fz - _z(Fx + y'Fy) (1.6)

where y' is an arbitrary direction. The expression in brackets "in

equation (1.2) is required to be proportional to equation (1.6), so that

where A is the proportionality coefficient. Since this equation must

be satisfied for any @_ it is equivalent to the follo_ing three condi-
tions:

_2F x = AF z -Fy = AFzy' Fz = A(F x + Fyy') (1.8)

Eliminating the arbitrary A and y', we obtain

(1.9)

Thus F must satisfy equation (1.9) which, as is known, is the

equation of the characteristics of the surfaces of equation (I.I).

The quadratic form in equation (1.5) is required to contain only

the derivatives of _ along F. To satisfy this requirement it is neces-

sary that

I FX(62_2X + (p$ + _) - ((Px_yFy + (PX(PzFz)2

= A(_xF z - _zFx) 2 + B(QxF z - (PzFx)((PyFz - _zFy) + C(_yF z - (PzFy)2
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Since _ is arbitrary_ equation (I.I0) is equivalent to the follow-

ing six equations:

I Fx_2 AF2z
2 =

1 CF2z_Fx= I AF2x + CF_FX = BFxFy +

-Fy = BFEz -F z = -2AF x - BFzFy BFxF z = -2CFyF z

The last equation of the six equations is a consequence of the

second and fourth equations. The third and fifth equations_ after elim-

inating A_ B, and C_ lead to equation (1.9)_ that is, the theorem has

been also proven for equation (1.3).

The expressions under the integral signs in equations (1.4) and

(1.5) are derivatives along F for any surface.

The theorem has thus been completely proven.

2. Wing of minimum drag for a given lift. - Let us consider an in-

finitely thin wing with arbitrary supersonic leading edge and trailing

edge perpendicular to the flow (fig. 1). For the control surface we

shall take the characteristic surface3 passing through the perpendicular

edge and the characteristic plane_ passing through the trailing edge of

the wing. Since the potential _ is an antisymmetric function of z_

the flow can be considered only for z _ O.

For the lift Y and drag X according to equations (I.3) and (1.4)

on the chosen control surface, ve have

00/j x : +

I
(A

o_

Y = 2POVO #f(

JFJ'B_x - _z)dS

(2.1)

where the integration is carried out only on the after characteristic

plane F_ since @ = 0 on the forward characteristic surface.

The velocity (B_ x - @z ) lies in the plane F.

The following characteristic variables are introduced:

= x - _z v = x + _z (2.2)
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Equation (2.1) can then be written in the form

X = 2-_ _2_2 + Y = 2PoV O/_dydk
(2.3)

The problem consists in finding the minimum of the functional equa-

tion (2.3) for X with given Y. 0u the line y = y(w)of intersection

of the forward and after characteristic surfaces, @ = O.

The Euler equation of this variational problem will evidently be

_132_ + _yy - o (2.,0

Integrating equation (2.3) by parts and introducing the new vari-

ables yields _

" _= z (2.5)
_=Y _= 2!8

we obtain

X = -Po

e(( + _ = o

_nln=od_ Y = 200,,0 _ln=o_

(2.6)

(2.7)

where _ is the length of the wing and L the wing span (fig. I).

Equations (2.6) and (2.7) agree with the equations obtained in the

Trefftz plane for a wing in an incompressible fluid except that in the

case cousidered_ @ must become zero on the line y = y(_) and not at

infinity_ as in the incompressible fluid.

It can easily be shown that, as in the case of the incompressible

fluid_ the functional for X from equation (2.7)_ for given Y, will be

minimal if

@hlq=O = C = constant (2.8)



6

We introduce _0 = _/C. The function _0 must satisfy the Laplace
equation (2.6)_ becomes zero on the line y = y(_) and _0_ = 1 for

= 0. From equation (2.6) we then have

y2
X = - P0C2A= SPoV_ Y = 2Dov0CA

The magnitude A_ like @o_depends only on the shape of the control
surface, which is determined b_ the shape of the wing.

We shall point out an interesting property of the flow around awing
of minimum drag.

On the after characteristic plane (that is_ for v = _) the velocity
u = @x is constant along the llne _ : y = constant. In fact, equation

(1.1) valid for the entire flow in the coordinates _ and v_ assumes
the form:

!
C_

o_

Comparing this equation with equation (2.&), valid on the plane

v = _ we obtain

+ - : : 0 (2.n)

that is_ the assertion has been proven.

3. Numerical example. - We shall give a very simple numerical example.

We consider awing of minimum drag for which the potential in the plane

w = _ has the form

@.= a_ 2 + b_ 2 + c_ + d (3.1)

where a_ b_ c3 and d are constants.

In order that the wing possess a minimum drag for a given lift, @

must satisfy the Laplace equation (2.6). For this reason, we must have

a = -b = k = constant
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1
For _ = &_ L and _ = 0 we must have

1 1 kL2= _kL2 + d= 0 or d= - _

Further _ since at the point _ = _, _ = 0
potential is equal to zeroj so that

/! _V

1

and _ = _ - 2_ = 0 the

_euce_

Since @ = 0

hyperbola

_=k

2v (F
+ _l_

2

(5.2)

on the line _ = y = y(W) -- yl(_) _ the line is a

Since the forward characteristic surface is an envelope of the Mach

cones issuing from the points of the leading edge (if the line of inter-

section of this envelope with the plane v = _ is known) the shape of

the leading edge in parametric form can easily be found:

_x- -}C_.2 + l) ]
(5.&)

vhere

I -r_< _'_"+*+ _-)]1Y - 2 ¥ (T*s . 1)s

L* = L_I% and X is a parameter.



Figure 2 presents the shape of the wings both for various values of

L* and for the corresponding lines of intersection of the characteristic

surfaces. For each wing shape the values of L_/2_ are indicated on the

L* 2 <curves_ for / _ the leading edgebecomes subsonic (the dotted
lines in fig. 2 correspond to a delta _ing with sonic edge).

Substituting equation (3.2) into equation (2.11), we obtain

X= 3 y2 (3.6)

!
c_

o_

Figure 3 gives the ratio X/Y 2 for the wing of minimum drag to the

corresponding magnitude for the plane wing of the same plan form.

4. Remarks. - i. The preceding sections show how the forces acting

on a body of minimum drag are determined. However_ to determine the

shapes of the bodies that produce these forces it is necessary to solve

the very complicated (in the general case)_ three-dimensional problem of

Goursat of constructing the field from the data on the characteristic

surfaces. Practically however it is advantageous not to solve this prob-

lem but to select, among wings of relatively simple shape_ those which

possess a drag approximating the extremal value. Thus, in figure 5 a

curve has been plotted corresponding to a delta_ing with conical twists

given according to the law

c_(X, y) = a + b(y/x) 2

(a is the local angle of attack and a and b are constants). We see

that the aerodynamic characteristics of this wing approximate those of

the extremal.

Analogous considerations show that it is not necessary to be con-

cerned with the absence of additional bodies within the flow. The ob-

tained minimum drag must be considered as a lower limit which_ as the

examples have shod-m, is attainable.

2. According to equation (2.11) in the plane v = _ the velocity

u is a function only of y. If @ is known, in the plane v = Z_ the

function u(y) on the line of intersection of the forward and after
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to

I

characteristic surfaces can easily be found.

integrals across the flow

m

W

Reference 3 shows for the

and that _ = constant and V = constant along the characteristics

= constant. Knowing u(y) in the plane v = Z and taking account of
the fact that S = constant along _ = constant the lift force distribu-

tion along the wing chordis easily obtained.

5. Up to now we have considered wings with supersoni6 edges. However,
all that has been said also remains valid for rings with subsonic edges.

In this case the region of integration will be cut out from the plane

v = _ by the Mach cone issuing from the leading edge of the _lug. In

the plane v = _ on the line B = 0 it is necessary_ in determining @_

to put @ = 0 outside the _iug. If ve consider a wing of very small

aspect ratio (L/_ << 1), the condition of _ becoming zero on the line

y = y(_) _-ill be equivalent to having the potential become zero at in-

finity, as for an incompressible fluid. It is evident that in this case
the extremal _-ill be a _-lug with elliptical spauwlse load distribution,

as for an incompressible fluid.

However, the flow producing an extremal wing in the supersonic case

will differ essentially from the corresponding flo_ iu the incompressible

case. In fact_ according to equation (2.11)_ the velocity u in the

plane v = I is constant along the line y = constant. Hence the velocity

will be finite also on the forward characteristic cone (the velocity u

can not be equal to zero on the trailing edge because according to eq.

(2.11) it would be equal to zero on the entire plane v = I, while accord-
iug to eq. (4.1), iu this case# the lift would be equal to zero). It is

kuo_m_ however, from the theory of characteristics that a finite discon-

tinuity on the characteristic cone is obtained only in the presence of

infinite disturbances in its vertex.

Thus, the _-ing can possess a blunt vertex similar to the so-called

minlmal-resistance K_rm_n cap. The method is thus also applicable to the

study of the extremal properties of _ings _rith subsonic edges. However,
the value of such investigations is limited because the forces determined

by the theorem of conservation of momentum also include the suction force.

Experience shows, however3 that the magnitude of the suction force obtained

by the linear theory is generally not realized. Hence, the extremal prop-
erties of wings with subsonic edges represent only an ideal lower limit.
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